Best代写-最专业靠谱代写IT | CS | 留学生作业 | 编程代写Java | Python |C/C++ | PHP | Matlab | Assignment Project Homework代写

机器学习代写|CHE1147H – Data Mining in Engineering Programming Assignment #5

机器学习代写|CHE1147H – Data Mining in Engineering Programming Assignment #5


1 Supervised learning

Here, you are going to use the features you generated in Assignment #3 to predict the
clients response to a promotion campaign. This is a typical classification problem in the
retail industry, but the formulation of the problem is similar to industries such as fraud
detection, marketing and manufacturing.

The clients responses are stored in the Retail Data Response.csv file from Kaggle. The
responses are binary: 0 for clients who responded negatively to the promotional campaign
and 1 for clients who responded positively to the campaign.

You will explore solving the classification problem with two different sets of features (i.e.
annual and monthly) and three different algorithms as shown in the image below.

1.1 Import the monthly and annual data and join

In Assignment #3, you created five different feature families that capture annual and monthly
aggregations. Here, you will model the retail problem with two approaches: using annual
and monthly features. Therefore, you need to create the joined tables based on the following

table 1

In both the annual and monthly features approach, you need to join at the end with table
#4, the clients responses. This is simply a table that contains the binary response of the
client to our marketing effort as described above and that is the output or label or target
that makes this a supervised learning problem.